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Optical Coherence Tomography.
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This feature issue commemorates the more than 30-year history of Optical Coherence Tomography
(OCT), one of the most successful biophotonic technologies. It continues a series of feature
issues in Biomedical Optics Express that started with the 25-year anniversary issue that had been
a great success in numbers of invited and contributed research papers [1]. Even though 5 years
since then seem short, the readers may convince themselves by delving into the many contributed
papers about the exciting developments in this fast and dynamic field of Biophotonics that easily
justify such short update time.

The feature issue comprises 3 invited and 34 contributed research papers that are an impressive
demonstration of the lasting innovative power of OCT even after three decades. As is well known,
the term OCT has been coined in 1991 [2], with the technology being based on developments
in low coherence interferometry and its application in biomedicine already in the 1980’s. An
important step stone in OCT development was the recognition and experimental demonstration
of the sensitivity advantage of Fourier domain OCT [3–5] that paved the way of modern OCT
technologies and in particular of fast functional OCT modalities such as OCT angiography or
OCT elastography. Enabling high acquisition speed has been equally essential for the impressive
developments in intraoperative OCT as well as endoscopic and catheter-based OCT. Parallel
OCT modalities such as full field or line field OCT on the other hand score with high structural
image fidelity and low motion distortion. All these aspects are well represented in this feature
issue as will be detailed in due course.

We start with the invited review paper highlights a novel emerging technology being dynamic
contrast OCT, with the promise to provide metabolic tissue information on the cellular level
[6]. Contributed research papers demonstrate applications of dynamic OCT providing insight
into activity of alveolar organoids [7] and improvement in dynamic OCT contrast such as by
self-referencing and suppression of reflection artifacts in cell cultures [8]. OCT angiography
(OCTA) has been the most successful functional extension of OCT that has been quickly translated
to the ophthalmic clinics. An invited research paper, that has also been selected as editors pick,
shows repeatable quantitative and temporally resolved blood flow analysis in the human retina
across different capillary plexuses using variable interscan delay times [9]. Variable interscan
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times have also been realized using flexible scan patterns for quantitative OCTA as shown in [10].
A further contributed research paper deals with the improvement of OCTA image quality and
the suppression of shadow artifacts [11], a fourth paper on OCTA shows a fast imaging pipeline
for application in dermatology [12]. Another emerging field is intraoperative OCT, represented
by two contributed research papers. One of them has been selected as editors pick visualizing
surgical maneuvers with real time volumetric OCT [13], the second paper outlines methods for
real-time feature-guided image fusion [14]. A functional extension in OCT with great promise is
OCT elastography (OCE) represented by contributed papers showing compressed OCE for breast
cancer tissue analysis [15], the assessment of corneal collagen cross linking by reconstruction of
the depth resolved shear moduli [16], and the assessment of friction using micro-elastography
[17]. Polarization sensitive OCT (PSOCT) is known to provide insight into tissue microstructure;
one research papers discusses the application of PSOCT to the safety assessment of non-steroidal
topical creams for dermatitis [18], a generalization termed Mueller matrix OCT analyses the organ
development in zebrafish supported by deep learning [19]. On the technology side, linefield and
full field OCT are attractive candidates for high speed or low-cost OCT in a most compact way
without the need of complex light source technology or expensive data acquisition hardware. One
paper demonstrates high parallelization, coined hyperparallel OCT, imaging of the anterior and
posterior human eye [20], another paper demonstrates smartphone-based OCT using a linefield
configuration [21]. Efficient line field illumination is demonstrated using a Powell lens [22],
with another paper addressing reduction of spectral cross talk at the detector plane in linefield
OCT and chromatic aberrations correction digitally [23]. Rapid full field optical coherence
microscopy has been achieved using a ferroelectric liquid crystal element for geometric phase
shifting [24]. Staying with full field OCT, a comparative analysis with optical transmission
tomography has been presented in [25]. Instead of applying multiple image points as in parallel
OCT a research paper discusses also the possibility to illuminate the sample through multiple
apertures, that help in improving resolution, penetration, as well as reduce speckle noise [26].
Speckle noise from the epithelium might for example be a confounding factor in the quantitative
analysis of corneal density based on OCT [27]. Visible light OCT is another technology with
increasing interest. Apart from the beforementioned smartphone OCT, there are further two
papers dedicated to this technology: one dealing with the application to dermatology [28], the
second discusses the use of a narrow band light source in the visible range together with digital
resolution enhancement [29]. Resolution enhancement using a generative adversarial network is
the subject of another contributed paper to the feature issue [30]. As is well known, the OCT
signal is generated through light scattering in tissue. However, multiple scattering is detrimental
for image contrast. A paper that has been selected as editors pick, introduces a mapping of
optical scattering properties into singly and multiply scattering samples [31] thereby exploiting
the information contained even in multiple scattered light. Suppression of multiple scattering is
shown by multi-focus averaging in [32]. Another theoretical analysis shows the possibility to
introduce differential phase contrast digitally in enface OCT [33]. The feature issue also includes
papers on biomedical applications of OCT to observe mouse ovarian follicles [34], to assess the
human fallopian tube using a small OCT catheter [34], studying uveitis mouse models with deep
learning assistance [35], providing real time feedback during laser osteotomy [36], and to image
the correct anatomy of the middle ear in real time [37], and to predict the onset of atrophy in
age-related macula degeneration patients using deep survival modeling [38]. Motion artifacts are
often critical during in-vivo imaging, and methods to reduce those artifacts by efficient tracking
are needed. A paper discusses high-dynamic motion tracking by applying circular scans with
OCT [39]. A flexible scanner to cover the full eye is the subject of another contributed paper [40].
Clearly, medical application of OCT calls for phantoms that help to benchmark clinical OCT
systems for various disease cases. A paper introduces a durable glaucoma phantom using ex-vivo
mouse retinal tissue [41]. Finally, a research paper discusses how to improve the annotation task
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though self-supervised generative learning [42]. Annotation is a cumbersome and often manual
effort, that is critical for machine learning assisted tissue segmentation tasks. As well visible
from the various contributions to this feature issue, machine learning using deep neural networks
has found entrance into various applications of OCT, ranging from image quality enhancement,
noise reduction, resolution enhancement, segmentation, to disease prediction. It is a powerful
tool with expectedly great impact on future developments in OCT as in other medical imaging
technologies.

The Guest Editors wish to extend their sincere thanks to all of the authors, and the numerous
anonymous reviewers, who contributed to this edition marking another installment in a series of
OCT anniversary feature issues. We are particularly indebted to the authors of all of the Invited
articles who agreed to take on and have fulfilled this challenging endeavour. Additionally, the
Editors extend their thanks to the dedicated OPTICA staff, whose consistent professionalism
and patient support were instrumental in this undertaking. We anticipate as for previous feature
issues on OCT that the contents of this Issue will stand as an authoritative source on the current
state of this exciting field, and look forward to many future anniversaries of OCT’s contributions
optics, science, and medicine.
Disclosures. The authors declare that there are no conflicts of interest related to this article.
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